Consumer behavior change journey

Information Management School

Tiago Oliveira - <u>toliveira@novaims.unl.pt</u> Catarina Neves - <u>cneves@novaims.unl.pt</u> Joana Neves - <u>jneves@novaims.unl.pt</u> October 2020

1. HARP project

- HARP stands for Heating Appliances Retrofit Planning. It is a project funded by the European Union through the Horizon 2020 framework, focusing on 5 EU Member States: Portugal, Spain, France, Italy and Germany.
- The main idea behind the project is to motivate individuals to plan the replacement of their often old and inefficient heating appliances, with more efficient alternatives.
- Through an application the HARP project will enable individuals to get an indication of the labelling classification of their heating system.

Universidade Nova de Lisboa – Nova Information Management School

- Definition of the consumer behaviour change model regarding the adoption of efficient heating systems;
- Dissemination of project results within academia/scientific forums.

Tiago Oliveira Associate Dean at NOVA IMS Full Professor Director of Information Management Research Center (MagIC)

Catarina Neves NOVA IMS Invited Assistant Professor

Joana Neves NOVA IMS Invited Assistant Professor

TARGET

Consumer with old and inefficient heating systems \rightarrow more than 50% of equipment performing as C or lower.

GOAL

Motivating consumer to plan and replace their old and inefficient heating systems

To achieve our goal, the work carried out went through different stages in order to be able to produce a final model that explains what makes individuals change to more efficient heating equipment.

3.1. Survey

 }	H	AF	2	P
-----------	---	----	---	---

Country	N (the necessary number of complete responses)	Number of total responses	Number of complete responses	Number of randomly selected responses	
France	237	453	411	363	
Germany	163	300	179	179	
Italy	264	649	387	357	
Portugal	227	519	331	262	
Spain	237	9531	4736	450	
All	1128	11452	6044	1611	

Descriptive statistics of all sample					
Sample characteristics (n=1611)	Descriptive statistics				
Age					
18-39	31%				
≥ 40	69%				
Gender					
F	41%				
М	59%				
Responsible decision to change to an EEHA	77%				
Houseowner	78%				
Children	40%				
Number of years of education	15.3				
Country					
France	23%				
Germany	11%				
Italy	22%				
Portugal	16%				
Spain	28%				

	Factor 1 – Commun. channels media (CCM)	Factor 2 – Commun. channels organisations (CCO)	Factor 3 – Commun. channels web media (CCW)
Radio	0.899	0.171	0.158
TV	0.763	0.245	0.189
Newspaper	0.705	0.215	0.279
Installers and/or related professionals	0.090	0.912	0.104
Stores of EEHA	0.157	0.678	0.217
Organisations (local associations, energy agencies)	0.301	0.504	0.119
People that I know and have an EEHA	0.191	0.336	0.181
Websites	0.128	0.200	0.695
Mobile Applications	0.321	0.159	0.534
Explained variance	2.166	1.859	1.012
Explained variance (%)	24.1%	20.7%	11.2%
КМО		0.807	

The idea behind this analysis is that a set of variables may have similar patterns of response because they are associated with a latent variable. Thus, the factorial analysis attempts to build factors that are those latent variables, that are easily interpreted.

For the *Communication Channels (CC)* and the *Co-Benefits (CB)*, a factorial analysis was performed to understand if there was any factor that could separate the variables into a more easily interpreted group. This analysis was performed for all responses together and also for each country.

	Factor 1 – Co-benefits	Factor 2 – Co-
	investment	benefits
Have better indoor air quality	0.802	0.080
Lower indoor noise level	0.797	0.086
Operate the EEHA more easily	0.795	0.084
Achieve a comfortable indoor temperature during the heating season more easily	0.787	0.033
Lower external noise level	0.777	0.074
Be more independent to energy prices	0.758	0.085
Have more useful living area	0.740	0.132
Have a reduced environmental impact	0.714	0.105
Have a more aesthetically pleasing EEHA	0.687	0.165
Value the dwelling in the real-estate market	0.667	0.233
It allows me to be independent from energy price fluctuations	0.072	0.757
It allows me to have a reduced environmental impact	0.160	0.669
It values the dwelling in the real-estate market (I will sell the house for a higher price if it is equipped with an EEHA)	0.121	0.655
Condensation, humidity and mould-related problems are avoided	0.091	0.618
It will not reduce my house's useful floor area	0.020	0.570
Explained variance	5.739	2.301
Explained variance (%)	38.3%	15.3%
KMO	0.899	

Media

• Radio

• TV

• Newspaper

Organisations

- Installers and/or related professionals
- Stores of EEHA
- Organizations (local associations, energy agencies)
- People that I know and have an EEHA

Web media

- Websites
- Mobile Applications

Co-benefits investment

• Have better indoor air quality

•Lower indoor noise level

•Operate the EEHA more easily

•Achieve a comfortable indoor temperature during the heating season more easily

Lower external noise level

•Be more independent to energy prices

•Have more useful living area

• Have a reduced environmental impact

• Have a more aesthetically pleasing EEHA

•Value the dwelling in the real-estate market

Co-benefits

•It allows me to be independent from energy price fluctuations

•It allows me to have a reduced environmental impact

•It values the dwelling in the real-estate market (I will sell the house for a higher price if it is equipped with an EEHA)

•Condensation, humidity and mold related problems are avoided

•It will not reduce my house's useful floor area

There are two families of structural equation modelling (SEM) techniques : (i) covariance-based techniques and (ii) variance-based techniques. Partial least squares (PLS) is a variance-based technique as discussed in this investigation since:

- not all items in our data are distributed normally (p<0.01 based on Kolmogorov–Smirnov's test); 1.
- the research model has not been tested in the literature; П.
- *III.* the research model presents formative constructs;
- *IV.* the research model is considered as complex;

Smart PLS 3.0 (Ringle, Wende, & Becker, 2015) was the software used to estimated the models.

Steps for achieving the correct model in PLS-SEM

3.3.2. Final conceptual model

Reflective constructs

- Internal consistency Composite Reliability (> 0.7)
- Convergent validity Average Variance Extracted (AVE) (>0.5)

Construct	Mean	STD	CR	EE	Sav	Lab	ОМ	EG	SI	НА	HEC	Att	BIC
EE	6.104	1.356	1.000	1.000									
Sav	5.952	1.201	0.894	0.489	0.861								
Lab	6.132	1.135	0.927	0.452	0.491	0.900							
ом	3.162	1.625	0.938	-0.247	-0.143	-0.157	0.914						
EG	4.355	1.541	0.960	0.233	0.120	0.218	-0.184	0.961					
SI	3.710	1.741	0.974	0.195	0.153	0.215	-0.088	0.601	0.962				
НА	4.305	1.924	1.000	0.094	0.066	-0.029	-0.072	-0.026	0.027	1.000			
HEC	3.332	2.600	1.000	0.016	-0.074	0.020	-0.078	0.306	0.249	-0.239	1.000		
Att	3.984	1.725	0.884	0.314	0.263	0.304	-0.159	0.314	0.311	0.056	0.023	0.890	
BIC	4.875	1.660	0.925	0.430	0.320	0.360	-0.287	0.457	0.439	0.084	0.121	0.680	0.897

Indicator reliability

Mean, Standard Deviation, CR, correlations and AVEs (square roots of the values in the diagonal) of reflective constructs

Reflective constructs

Discriminant Validity Fornell-Larcker criterion

Cross loadings

Heterotrait-Monotrait Ratio (HTMT) (<0.9)

Construct	EE	Sav	Lab	ОМ	EG	SI	HA	HEC	Att	BIC
EE										
Sav	0.530									
Lab	0.478	0.567								
ОМ	0.259	0.155	0.169							
EG	0.241	0.128	0.234	0.201						
SI	0.199	0.170	0.232	0.092	0.640					
НА	0.094	0.072	0.031	0.073	0.027	0.028				
HEC	0.016	0.089	0.038	0.082	0.322	0.254	0.239			
Att	0.365	0.334	0.374	0.192	0.379	0.370	0.065	0.027		
BIC	0.459	0.368	0.405	0.320	0.506	0.478	0.090	0.129	0.845	

Heterotrait-Monotrait Ratio (HTMT)

Consequently, the reflective constructs can be used to test the structural model.

ltem	EE	Sav	Lab	ом	EG	SI	НА	HEC	Att	BIC
EE	1.000	0.489	0.452	-0.247	0.233	0.195	0.094	0.016	0.314	0.430
Sav1	0.311	0.708	0.325	-0.050	0.057	0.114	0.047	-0.102	0.186	0.188
Sav2	0.491	0.936	0.482	-0.168	0.139	0.172	0.065	-0.048	0.265	0.340
Sav3	0.435	0.920	0.441	-0.128	0.100	0.102	0.056	-0.058	0.220	0.274
Lab1	0.385	0.433	0.887	-0.073	0.137	0.161	-0.038	-0.025	0.263	0.276
Lab2	0.385	0.420	0.927	-0.136	0.225	0.222	-0.013	0.027	0.262	0.320
Lab3	0.443	0.466	0.884	-0.201	0.219	0.195	-0.028	0.045	0.291	0.366
OM1	-0.221	-0.118	-0.140	0.891	-0.187	-0.089	-0.013	-0.094	-0.131	-0.237
OM2	-0.206	-0.134	-0.126	0.903	-0.116	-0.034	-0.087	-0.036	-0.133	-0.242
ОМЗ	-0.246	-0.138	-0.161	0.946	-0.196	-0.112	-0.090	-0.083	-0.167	-0.300
EG1	0.252	0.161	0.266	-0.164	0.967	0.575	-0.027	0.270	0.329	0.465
EG2	0.192	0.063	0.145	-0.192	0.955	0.580	-0.021	0.322	0.270	0.409
SI1	0.179	0.136	0.199	-0.085	0.594	0.957	0.026	0.251	0.303	0.424
SI2	0.177	0.143	0.202	-0.065	0.566	0.969	0.031	0.227	0.290	0.408
SI3	0.205	0.163	0.220	-0.103	0.574	0.961	0.022	0.239	0.304	0.435
НА	0.094	0.066	-0.029	-0.072	-0.026	0.027	1.000	-0.239	0.056	0.084
HEC	0.016	-0.074	0.020	-0.078	0.306	0.249	-0.239	1.000	0.023	0.121
Att2	0.325	0.287	0.311	-0.164	0.282	0.255	0.060	0.009	0.894	0.640
Att3	0.233	0.180	0.229	-0.118	0.276	0.299	0.039	0.033	0.885	0.569
BIC1	0.413	0.299	0.342	-0.257	0.437	0.405	0.067	0.126	0.614	0.927
BIC2	0.449	0.358	0.368	-0.258	0.351	0.370	0.108	0.054	0.579	0.908
BIC3	0.294	0.205	0.258	-0.256	0.438	0.405	0.053	0.144	0.635	0.853

Loadings and Cross loadings

3.3.3. Measurement models

Formative constructs

Variance Inflaction Factor (VIF)

Assess multicolinearity

Consequently, the formative constructs can be used to test the structural model.

Construct	ltem	Mean	STD	Weights	Loadings	VIF
	CB1	5.623	1.737	0.274***	0.589***	1.516
	CB2	5.277	1.675	-0.214***	0.227***	1.395
Co-benefits	CB3	5.312	1.696	0.261***	0.591***	1.537
	CB4	5.782	1.476	-0.148*	0.501***	1.819
	CB5	6.081	1.354	0.854***	0.946***	1.634
	CB6	252.943	236.461	0.403***	0.801***	2.674
	CB7	249.765	234.095	-0.089	0.699***	2.897
	CB8	218.981	223.278	0.028	0.658***	3.137
	CB9	209.052	222.694	0.125	0.637***	3.077
Co-benefits	CB10	195.953	207.858	-0.150	0.611***	2.681
investment	CB11	262.967	242.853	-0.042	0.671***	2.356
	CB12	186.082	200.868	0.343***	0.652***	2.238
	CB13	223.899	223.320	-0.230**	0.550***	2.378
	CB14	270.643	236.566	0.134	0.677***	1.982
	CB15	297.098	246.125	0.634***	0.902***	2.268
	CC1	4.627	1.894	0.481***	0.768***	1.207
Communication	CC7	5.061	1.814	0.573***	0.854***	1.426
channels organisations	CC8	4.975	1.653	0.019	0.595***	2.143
	CC9	4.538	1.691	0.226**	0.577***	1.908
Communication	CC2	4.979	1.575	0.624***	0.868***	1.243
channels web media	CC3	3.577	1.802	0.553***	0.829***	1.243
Commission	CC4	3.672	1.762	0.320*	0.848***	2.144
	CC5	3.344	1.784	0.295	0.904***	3.046
channels media	CC6	3.608	1.871	0.498***	0.926***	2.478

*Notes:***p*-value<0.10; ***p*-value<0.05; ****p*-value<0.01

3.4.1. Results of final conceptual model – All countries

*p-value<0.10; **p-value<0.05; ***p-value<0.01

HARP

Reference	Dependent Variable	R-Squared
(Yang & Zhao, 2015)	EERE (Domestic energy-efficient and renewable energy equipment) purchase behavioral intention (Structural equation model)	(Adjusted) R²= 46.7%
(Hrovatin & Zoric, 2018)	Decision to undertake EE (energy efficiency) retrofit (Probit model)	(Pseudo R-Squared) R²= 9.8%
(Hrovatin & Zoric, 2018)	Decision on the number of EE (energy efficiency) retrofits (Poisson model)	Pseudo R-Squared) R²= 2.7%
(Banfi, Farsi, Filippini & Jakob, 2006)	Marginal willingness to pay for different energy-saving characteristics in single-family houses (Logit model)	(Pseudo r-Squared) R²= 31.8%
(Banfi, Farsi, Filippini & Jakob, 2006)	Marginal willingness to pay for different energy-saving characteristics in rented apartments (Logit model)	(Pseudo r-Squared) R²= 29.8%
(Sardinou & Genoudi, 2013)	Consumers' willingness to adopt renewable energy sources within their residence (Probit model)	(McFadden's) R²= 28.1%

3.4.1. Results of final conceptual model – France

*p-value<0.10; **p-value<0.05; ***p-value<0.01

3.4.1. Results of final conceptual model – Germany

*p-value<0.10; **p-value<0.05; ***p-value<0.01

HARP

3.4.1. Results of final conceptual model – Italy

*p-value<0.10; **p-value<0.05; ***p-value<0.01

3.4.1. Results of final conceptual model – Portugal

*p-value<0.10; **p-value<0.05; ***p-value<0.01

3.4.1. Results of final conceptual model – Spain

*p-value<0.10; **p-value<0.05; ***p-value<0.01

HARP

FRANCE

- Official campaigns from national authorities and energy agencies
- Appliance with a positive energy label (above C)
- Receiving information about heating appliances options
- Energy and monetary savings
- Willingness to pay for house and consumer wellbeing

GERMANY

- House and consumer wellbeing
- Official campaigns from national authorities and energy agencies
- Willingness to pay for house and consumer wellbeing
- Change low energy performance of the house
- Inner social circle opinion
- Easy maintenance and operation

ITALY

- Willingness to pay for house and consumer wellbeing
- Increase house energy efficiency
- Inner social circle opinion
- Receiving information about heating appliances options

PORTUGAL

- Willingness to pay for house and consumer wellbeing
- Easy maintenance and operation
- Official campaigns from national
- authorities and energy agencies
- Receiving information about heating appliances options

SPAIN

- Receiving information about heating appliances options
- Inner social circle opinion
- Easy maintenance and operation
- Increase house energy efficiency
- Willingness to pay for house and consumer wellbeing

Co-benefits	In a general way, consumers are more likely to replace equipment's in exchange of the benefits that it can bring to their and house's health, comfort, etc.
Influencers	As the social circle and connections becomes more and more important in consumers life, in the change of heating equipment is not different. Consumers value their friends and relative's opinion when changing to an efficient heating equipment
Local organizations and energy agencies	Not only public opinion from social connections is important, but also specialized organizations play an important role. Investing in an efficient heating equipment brings more details and specifications then usual shopping, so specialized opinions and advices are still very relevant

Thank you for your attention!

Nova IMS

- Tiago Oliveira toliveira@novaims.unl.pt
- Catarina Neves <u>cneves@novaims.unl.pt</u>
- Joana Neves jneves@novaims.unl.pt

NOVA IMS

Tiago Oliveira toliveira@novaims.unl.pt

Catarina Neves <u>cneves@novaims.unl.pt</u>

Joana Neves jneves@novaims.unl.pt

Construct	Items
Energetic efficiency (EE)	It will increase my house's energy efficiency
	I receive a subsidy to finance the replacement
Savings (Sav)	I am aware of the total energy savings over EEHA lifetime
	I am aware of the total monetary savings over the EEHS lifetime
	The energy label is important in the decision of buying a heating appliance
Label (Lab)	When I buy a heating appliance, I pay attention to the energy label
	I am more willing to buy a heating appliance with an efficient energy class (above C, i.e., A or B)
Operation and	I believe that the operation of an EEHA is more complicated than my current heating solution
Maintenance	I believe that an EEHA needs the user to perform the maintenance work by himself
(OM)	I believe that the maintenance of na EEHA requires too much work
Engagement (EC)	I pay a lot of attention to anything about EEHA
Engagement (EG)	I keep up with things related to EEHA
Cocial influence	People who are important to me think that I should adopt EEHA
	People who influence my behaviour think that I should adopt EEHA
(31)	People wose opinions that I value prefer that I adopt EEHA
	How old is your dwelling since your last renovation (in years)? If it was not renovated, answer with the years since
House age (HA)	its construction.
House energetic label (HEL)	If you know, what is the energy class of your house (based on the Energy Performance of Building Certificate)?

Construct	ltems
Co-benefits (CB)	Condensation, humidity and mould related problems are avoided
	It will not reduce my house's useful floor area
	It values the dwelling in the real-estate market (I will sell the house for a higher price if it is equipped with an
	EEHA)
	It allows me to be independent from energy price fluctuations
	It allows me to have a reduced environmental impact
Co-benefits investment (CB Inv)	Achieve a comfortable indoor temperature during the heating season more easily
	Have better indoor air quality
	Lower indoor noise level
	Lower external noise level
	Operate the EEHA more easily
	Be more independent to energy prices
	Have a more aesthetically pleasing EEHA
	Have more useful living area
	Value the dwelling in the real-estate market
	Have a reduced environmental impact

Construct	Items
Communication channels media (CCM)	Websites
	Mobile Applications
	Newspaper
	Radio
	TV
Communication channels organizational (CCO)	People that I know and have an EEHA
	Organizations (local associations, energy agencies)
	Installers and/or related professionals
	Stores of EEHA
Attitude (Att)	I am willing to change my heating appliance(s)
	I am planning to buy an EEHA
Behaviour intention (BI)	I intend to change to EEHA in the future
	I will try to change to EEHA in my future
	I am ready to change to EEHA